Mechanisms underlying functional changes in the primary motor cortex ipsilateral to an active hand.

نویسندگان

  • Monica A Perez
  • Leonardo G Cohen
چکیده

Performance of a unimanual hand motor task results in functional changes in both primary motor cortices (M1(ipsilateral) and M1(contralateral)). The neuronal mechanisms controlling the corticospinal output originated in M1(ipsilateral) and the resting hand during a unimanual task remain unclear. Here, we assessed functional changes within M1(ipsilateral) and in interhemispheric inhibition (IHI) associated with parametric increases in unimanual force. We measured motor-evoked potential (MEP) recruitment curves (RCs) and short-interval intracortical inhibition (SICI) in M1(ipsilateral), IHI from M1(contralateral) to M1(ipsilateral), and the influence of IHI over SICI using transcranial magnetic stimulation at rest and during 10, 30, and 70% of maximal right wrist flexion force. EMG from the left resting flexor carpi radialis (FCR) muscle was comparable across conditions. Left FCR MEP RCs increased, and SICI decreased with increasing right wrist force. Activity-dependent (rest and 10, 30, and 70%) left FCR maximal MEP size correlated with absolute changes in SICI. IHI decreased with increasing force at matched conditioned MEP amplitudes. IHI and SICI were inversely correlated at increasing forces. In the presence of IHI, SICI decreased at rest and 70% force. In summary, we found activity-dependent changes in (1) SICI in M1(ipsilateral), (2) IHI from M1(contralateral) to M1(ipsilateral), and (3) the influence of IHI over SICI in the left resting hand during force generation by the right hand. Our findings indicate that interactions between GABAergic intracortical circuits mediating SICI and interhemispheric glutamatergic projections between M1s contribute to control activity-dependent changes in corticospinal output to a resting hand during force generation by the opposite hand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)

Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...

متن کامل

Finger and face representations in the ipsilateral precentral motor areas in humans.

Several human neuroimaging studies have reported activity in the precentral gyrus (PcG) ipsilateral to the side of hand movements. This activity has been interpreted as the part of the primary motor cortex (M1) that controls bilateral or ipsilateral hand movements. To better understand hand ipsilateral-PcG activity, we performed a functional MRI experiment in eight healthy right-handed adults. ...

متن کامل

Pilot study of functional MRI to assess cerebral activation of motor function after poststroke hemiparesis.

BACKGROUND AND PURPOSE Studies of cerebral activation of motor function after ischemic stroke may enhance our understanding of the underlying mechanisms of motor functional recovery, including the role of the noninfarcted hemisphere. METHODS Eight right-handed recovering hemiparetic or hemiplegic patients were studied using functional MRI. Results were evaluated for each patient to consider i...

متن کامل

Functional brain reorganization for hand movement in patients with multiple sclerosis: defining distinct effects of injury and disability.

Previous work has demonstrated potentially adaptive cortical plasticity that increases with brain injury in patients with multiple sclerosis. However, animal studies showing use-dependent changes in motor cortex organization suggest that functional changes also may occur in response to disability. We therefore wished to test whether brain injury and disability lead to distinguishable patterns o...

متن کامل

Near-infrared spectroscopic topography as a tool to monitor motor reorganization after hemiparetic stroke: a comparison with functional MRI.

BACKGROUND AND PURPOSE Motor functional recovery from stroke can occur, but the mechanisms underlying this restorative process remain to be elucidated. We used near-infrared spectroscopic (NIRS) topography in comparison with functional MRI (fMRI) to evaluate the compensatory motor activation of cortical regions in patients who recovered from hemiparesis after cortical cerebral infarction. MET...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 28 22  شماره 

صفحات  -

تاریخ انتشار 2008